
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 10, 179-197 (1990) 

A DESIGN METHOD FOR TURBOMACHINERY BLADING 
IN THREE-DIMENSIONAL FLOW 

W. S. GHALY 
Ghaly Consultants Enr., 3215 Madere Street, Brossard, Quebec, Canada J4 Y 1 T4 

SUMMARY 
A mixed spectral finite element scheme for the implementation of a design method for turbomachinery 
blading in three-dimensional subcritical compressible flow is presented. The method gives the detailed blade 
shape that would produce a prescribed tangential mean swirl schedule, given the hub and shroud profiles, 
the number of blades and their stacking position. After a presentation of the mathematical formulation of 
the design theory, the current numerical approach is described. It is then applied to the design of blading for 
radial inflow turbine impellers in three-dimensional flow. 
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INTRODUCTION 

There are two approaches to solving the flow in a turbomachine. In the first one, known as the 
direct problem, the geometric configuration is specified and the flow and pressure fields are 
sought. The second approach, called the design (indirect or inverse) problem, is based on 
specifying part of the geometry and part of the flow or pressure field, and the solution provides the 
remaining part. 

The theory upon which the present approach to the design problem is based has been recently 
published.'-3 The flow is assumed to be steady and irrotational, the fluid is inviscid and 
incompressible. The blades are assumed to be infinitely thin and are set at zero incidence angle. 
The blades are represented by sheets of bound vorticity. The Clebsch approach is used to 
kinematically decompose the flow field into a potential and a rotational part. The latter is related 
to a function of the blade shape and the tangential average swirl schedule, which is prescribed at 
present and is assumed to be of the free vortex type. The blades are determined iteratively from 
the blade boundary condition, which requires that there should be no flow normal to the blades. 

This approach was demonstrated to work in the two-dimensional limit as well. Hawthorne et 
at.' used it to design a two-dimensional cascade in the blade-to-blade plane, and in the meridional 
plane4 with allowance for compressibility and rotationality, although no numerical examples 
were given in that work. Dang and McCune' allowed for blade thickness in the blade-to-blade 
plane. Dang6 also solved the three-dimensional design problem in a rectilinear cascade allowing 
for rotationality. Recently, Borges7 allowed for arbitrary hub and shroud profiles; his work was 
confined to incompressible flow using a multigrid finite difference technique. 

In this work, the analytical theory of blade design'-' is extended to allow for compressibility 
and, to first order, for blade thickness. The numerical implementation of this design method for 
arbitrary hub and shroud profiles is then discussed in the subsonic flow regime. This implementa- 
tion involves the use of Fourier series to take advantage of the flow periodicity in the tangential 
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direction. Since the finite element method can easily handle complex boundaries, it is used to 
numerically solve the relevant equations for the resulting Fourier harmonics in which the spatial 
dependence corresponds to that in the meridional plane. The blade surface is determined from the 
blade boundary condition, which yields a convective equation along the streamlines. Since the 
problem is non-linear, the solution is obtained iteratively. The blade thickness is represented by a 
mean stream surface thickness parameter. The numerical scheme is then described. The design of 
two radial inflow turbine impellers is used to demonstrate the application of this new technique. 

2. ANALYTICAL FORMULATION 

2.1. Governing equations 

We consider a steady irrotational flow of an inviscid non-heat-conducting ideal gas or liquid in 
a radial impeller of arbitrary hub and shroud profiles, rotating at an angular speed o. A 
diagrammatic sketch of a typical low-speed inflow radial turbine impeller, the co-ordinate system, 
the domain of interest and the notation are shown in Figure 1. 

With the above assumptions and in the absence of shocks, the flow may be considered 
homentropic and homenergetic (the entropy Se and the rothalpy H :  are constant everywhere in 
the flow field). Thus the continuity, Crocco and energy equations and the equation of state may be 
written respectively as 

v . p w  = 0 ,  (1) 

W x n = V H :  - T V S e  = 0, (2) 
H :  = H ,  - wrV, ==constant, 

P = p R T ,  

a = 6 - f(r.2) 
= 0 or J (2"B) at the blade 

+ pressure surface 
- suction surface 

b. Projection AA 
2 l r ' e , o  

a. Meridional Plane 

(3) 

(4) 

Figure 1. Schematic diagram of a radial inflow turbine impeller 
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and, for a homentropic flow of an ideal gas (thermally and calorically perfect), the isentropic 
relation holds so that 

where P ,  p and T are the fluid pressure, density and temperature respectively, V is the velocity 
vector in the absolute frame of reference, W is the velocity vector relative to the impeller 
(W = V - ore,), R is the vorticity vector, H: and H, are the rothalpy and total enthalpy respect- 
ively (Ht=H+0.5V2),  H is the static enthalpy, y is the ratio of specific heats at constant 
pressure and at constant volume, oreg is the impeller velocity and ( r ,  8, z )  denotes the right- 
handed cylindrical co-ordinate system. 

In the limit of an imcompressible fluid flow (p=constant) the density drops out from the 
continuity equation and H is replaced by P / p  in the momentum and energy equations. 

2.2. The Clebsch approach 

rotational part in the following form:' 
In the Clebsch formulation the velocity is kinematically decomposed into a potential and a 

v = vq5 + OVT, (6)  
where q5(r, 8, z ) ,  ~ ( r ,  8, z )  and ~ ( r ,  8, z )  are the Clebsch variables. In the present problem they can 
be identified with the mean swirl schedule and a function of the blade shape so that the vorticity 
field R may be written 

n = v x v  (74  
=vO X V T  (7b) 
= vrv, x Vad , (a ) ,  (74 

where the biade surface a can, without loss of generality, be written (e.g. in the blade region) as 

(8) 
In equation ( S ) , j  is an integer and B is the number of blades (see Figure 1). The d,(a) in equation 
(7c) is the periodic delta function" given as 

a(r ,  8, z )  = O - f ( r ,  Z) = +j(27c/B). 

j =  +a 

6,(a) = ,  1 eijBa, 
j = - m  

(9) 

where i = J( - 1). The overbar (-) defines a tangential average or mean, so that for any variable 
~ ( r ,  8, z ) ,  

A (  r,  8, z )  d8 

With the assumptions prescribed here (namely the upstream flow being assumed irrotational 
and the mean swirl schedule being of the free vortex type), the flow upstream and downstream of 
the blade row is irrotational so that all the vorticity will be contained in the blades. Thus R as 
given in equation (7c) will represent the vorticity in the entire flow field and will vanish outside the 
blade. 

Since the flow is periodic in the circumferential direction, it is convenient to express the flow 
variables as a sum of a mean part (-) and a periodic part (I). This sum corresponds to the 
mathematical representation of the flow variables by a Fourier series in whic h the mean part, e.g. 
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0, is the zeroth harmonic while the periodic part fi constitutes the non-zeroth harmonics. 
Integrating fl given by equation (7c), the velocity field may be written as2- 

v = ~4 + r VOVtl- S(tl)VrV,, (1 1) 

where the mean and periodic parts of the velocity field can be written as 

in the blade region; and since in the upstream and downstream regions the flow field is 
irrotational, it follows that 

0 = V$, (12b) 
( 13b) v = VJ. - 

In equation (13a), S(a) is the sawtooth function" given as 
j =  +a, eijSa 

S(a) = 1 -. 
j = - m  ijs 
20 

(14) 

The entire flow field, with the assumptions stated above, can now be computed in terms of the 
Clebsch variables $, 6 and a ( r v ,  being prescribed in the design problem). The governing 
equations for the mean flow and the periodic flow are derived in the next two subsections. 

2.3. The mean flow equations 

The continuity equation may be rewritten as 

the pitch average of which gives 

V . 8  = V - W  = -W.Vln(p/p:). 

The RHS is a non-linear term which couples the periodic flow field with the mean as a result of 
compressibility. 

For computational reasons, the mean flow is formulated in terms of the Stokes streamfunction 
Y rather than the scalar potential $given in equation (12). These reasons have to do with the fact 
that the mean streamlines are eventually needed in the solution for the blade shape. In using Y to 
describe the mean flow, it is convenient to define a fictitious 'average' density pav(r, z )  (pa, # p )  
which satisfies 

where b is a prescribed mean stream surface thickness parameter; it is defined as the per cent 
openness of the blade passage in the &direction. Comparing equation (17) with equation (16) we 
obtain a governing equation for pay as 

V*bp,,P = 0, (17) 

which yields the 'average' density pa, (when solved with an appropriate initial condition). 
Equation (17) can now be satisfied by introducing the Stokes streamfunction Y ( r ,  2): 
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The governing equation for '4' is obtained by equating the definition of C!, from equation (7a) to 
that from equation (7c) using equation (19); this gives 

( L - N ) ~  = -(pav/p:)%, (20) 
where 

Equation (20) is elliptic when the flow is subsonic, and hyperbolic when the flow becomes 
supersonic. Note that the RHS vanishes outside the blade region since the flow is irrotational 
there. 

The boundary conditions for equation (20) when the flow is subsonic are as follows. 

1. Along the inflow and outflow sections, aY/an=O. 
2. Along the hub and the shroud, Y is constant (no flow normal to the wall). 

A useful flow model, the bladed actuator duct,' is obtained when the number of blades B 
becomes infinite while r v8 is kept fixed. In the bladed actuator duct ( B -  00) the periodic part of 
the flow vanishes; hence i = O ,  pay = p  and equation (18) is identically satisfied. In that limit a blade 
shape can still be determined as will be described in Section 2.5. 

2.4. The periodic f low equation 

averaged continuity equation (16) from the continuity equation (15) to yield 
The continuity equation for the periodic part of the flow is obtained by subtracting the pitch- 

V - C  = -W-Vln(p/p:) + W.Vln(p/p:). (21) 
Substituting for i in terms of its Clebsch variables from equation (13) we obtain 

v2$= v . { s ( ~ ) v ~ V , )  -w*Vln(p/p:) + w.Vln(p/p:), (224 
where V 2  is the Laplacian. The first term on the RHS vanishes outside the blade region since the 
flow is assumed to be irrotational there, while the other two terms vanish in the incompressible 
flow limit. 

The boundary conditions for equation (22a) when the flow is subsonic are as follows. 

1. Along the inflow and outflow sections, i ( = V &  is assumed to be negligibly small so that 

2. Along the hub and shroud, there should be no flow normal to the wall so that 
a&/ an is approximately zero there. 

S(a)arv,/an in the blade region, 
elsewhere. 

Equation (22) can be readily solved for & r, 8, z )  if the RHS is given. As mentioned earlier, 
because of inherent periodicity in the &direction, Fourier series can be used to represent the 
0-dependence of any of the flow variables. Accordingly, 6 may be approximated with a truncated 
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Fourier series of the form 

I 

Since 4 is real, Gj = 6 t j ,  where * denotes the complex conjugate, so that only 6j for 
either positive or negative j need be computed. By substituting for 6 from equation (23) into 
equation (22) and making use of the orthogonality property of the Fourier series, the following set 
of equations for the Fourier coefficients is obtained: 

rViDGj(r, z )  = rV * [(l/ijB)e-ijBf(r3z) Vr Po] - r [  W - Vln(p/p:) - W * Vln(p/pF) IFT, (24a) 

where 

and the subscript FT denotes the Fourier coefficients; however, these coefficients are evaluated 
using the predetermined value of that term at the chosen Fourier collocation points. This 
equation needs to be solved only for j =  - N to j =  - 1. Note that the RHS of equation (24a) 
vanishes when J = 0, so that Go E 0 (with the corresponding boundary conditions) as it should, 
since i = 0 by definition. 

The boundary conditions associated with equation (24a) follow from equations (22b, c). Taking 
into account that ar l / , / i h=o  along the hub and shroud,’ these boundary conditions may be 
written as a6 j /dn  = O  on the entire boundary. However, gj=0 at one point is used to set the value 
of the arbitrary constant to zero. Hence the boundary conditions used in solving for 6j take the 
form of 

G j  = O  at an inflow-shroud point, 
aibj/an = 0 elsewhere. 

Since the source term in equation (24a) has a periodic delta function behaviour, 6, is expected to 
be O(l/j2); hence the truncation error in the representation of 6, given in equation (23), would be 
O(l/N2). Moreover, VGj will be O(l/j); therefore Gibbs’ phenomenon will be encountered in 
evaluating V$ and hence in calculating the velocity field. However, this fact has no serious impact 
on the calculation of the blade shapef(r, z) since that calculation involves only the mean of the 
velocities on both sides of the blades which does not suffer from that phenomenon. 

In summary, the flow periodicity in the @direction has been used to transform a three- 
dimensional elliptic problem, equations (22), into a set of two-dimensional ones, equations (24). 
Now both mean and periodic flow fields are obtained by solving numerically a set of two- 
dimensional elliptic equations. This is accomplished by appealing to the finite element method 
(FEM) for the reasons listed in Section 3.1. 

2.5. The blade boundary condition 

The remaining boundary condition is the blade boundary condition, which states that the 
velocity normal to the blade surfaces vanishes. Since Va is normal to the blade surfaces, the blade 
boundary condition on the pressure and suction sides of the blades may be written as 

w + . v a  = 0, w - . v a = o .  
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Adding and subtracting the above equations we obtain 

W,,.VU = 0 ,  
AW-VU = 0 ,  

where the velocity ‘at’ the blades is defined as wbj E $(W’ + W - )  and the velocity jump across 
the blades is given as AW = W +  - W - .  Equation (26) is identically satisfied since AW is a 
measure of the bound vorticity which lies in the blade surface. 

It remains to satisfy equation (25a), called the blade boundary condition.2 This equation is 
solved for the blade shapef(r,z); it may also be written in the form 

9 -  V f  = W,/r + ibj  * vu , (25b) 

V * V f = W , / r .  (254 

and when the number of blades B+m, it reduces to 

An analogous initial condition for f ( r ,  z) in the r-z plane is needed to fix the value of the arbitrary 
constant in the solution of any of equations (25a-c); e.g. 

f,, =f(rs1,  zs1) (254 
may be given along a line going from hub to shroud (not coinciding with any of the streamlines). 
This initial condition is called the blade stacking position.* 

We proceed to describe the Kutta condition and some kinematic constraints implied by the 
above formulation in the following two subsections. 

2.6. Kinematic constraint 

The fact that the flow is assumed to be irrotational and inviscid implies thatI6 drV,/an = 0 
along the hub and shroud (n  being the unit vector normal to the hub and the shroud surface). This 
implication follows from relating rV, to the circulation around the blade and satisfying the wall 
boundary condition. It results in an additional constraint on the blade shape at its intersection 
with the hub and shroud, namelyg af/an=O. This generalizes the result previously obtained by 
Tan et aL2 to bounding walls of arbitrary geometry. 

2.7. The Kutta condition 

The Kutta condition ensures smooth flow at a sharp trailing edge. This translates to the fact 
that, in subsonic flow, the pressure must be continuous at the trailing edge. Accordingly, the swirl 
schedule should be such as to satisfy this condition. The homentropic assumption implies that all 
the thermodynamic properties will be continuous if either P or p or T is. Hence, by requiring that 
the enthalpy jump across the blade trailing edge vanishes, the temperature and hence the pressure 
will also be continuous. 

Since the rothalpy is uniform, it follows that 

H +  - H -  = 05(W-)’ - 0*5(W+)2 
= - W b l * A W .  

Using the definition of Wbj, substituting for AW in terms of the bound vorticity and using the 
blade boundary condition (equation (25a)) we obtain 

(27b) 
2n 
B 

H +  - H -  = -Wb,.VrVB, 
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so that the Kutta condition can be directly satisfied by setting the RHS of the above equation to 
zero, i.e. 

W,, .VrV,  = 0 .  (28) 

It is noteworthy that since the incidence angle at  the blades' leading edge (LE) is assumed to be 
zero, the pressure there should be continuous in a way similar to that at the TE. Therefore the 
condition of zero incidence at the blades' LE implies that rV0 should satisfy equation (28) at the 
LE as well. 

3. NUMERICAL TECHNIQUE 

The numerical scheme adopted in solving the governing equations, namely equation (20), (24), 
(25b) and (18), and the computational procedure are presented in this section. The main features 
of (and notes on) the numerical scheme are also described. 

3.1. The elliptic solver 

Equation (20) for the mean streamfunction Y and equation (24) for the Fourier harmonics 6j of 
the periodic potential function are two-dimensional elliptic equations (when the flow is subsonic). 
Since the solution procedure is iterative, the non-linear part of the differential operator in 
equation (20), namely N ,  is taken to the RHS, which can now be assumed as given from the 
previous iteration or the initial guess so that, at each iteration level, the equations may be treated 
as linear equations. 

In the present work, FEM consists of the following. A Galerkin weighted residual technique is 
adopted and the conventional finite element technique is applied to the resulting integral. The 
isoparametric formulation is adopted and a nine-node element with a biquadratic basis function 
is used. 

At this point, a few notes on FEM are due. 

1. It is well suited for domains having highly irregular boundaries. The Dirichlet boundary 
condition nodes need not be solved for, and the homogeneous Neumann boundary 
condition (d/dn=O) is a natural boundary condition for FEM. 

2. For the basis function used in this problem, the method is third-order accurate' ' when the 
elements are not distorted, i.e. 

y e x a c t  - ynumerical = O ( I 3 ) ,  
where I is the element characteristic dimension (e.g. its diagonal). The accuracy deterior- 
ates12 by 0 . 3 4 7  of an order depending on the amount of mesh distortion incurred. 

3. For the direct solver, since the system matrix is sparse, it is efficiently stored using the skyline 
method.13 It is also a well conditioned matrix so that round-off errors associated with 
solving it are minimal. It is solved directly by an LDU dec~mposi t ion '~ done once (since the 
differential operators are linear) and back substitution done at each iteration level. Since the 
differential operators ( L  in equation (20) and rV:,, in equation (24)) are self-adjoint, the 
resulting system matrix is symmetric, hence only half of it is stored, e.g. L, and U = LT, where 
LT is the transpose of L. 

4. For the iterative solver, since the system matrix is symmetric, sparse and well conditioned, it 
can be solved efficiently by the preconditioned conjugate gradient method.14 The starting 
value for the unknown function is its value from the previous iteration (or zero on the first 
iteration). 

5. Both direct and iterative solvers do not require an elaborate initial guess for the unknown 
function; they simply require the boundary condition. 



DESIGN OF TURBOMACHINERY BLADING IN 3D FLOW 187 

3.2. The convection equations solver 

Equation (25b) for the blade shape f ( r , z )  and equation (18)  for the average density p a v ( r , z )  are 
convective equations along one set of characteristic directions, namely the streamlines as defined 
in equation (19). In these equations the RHS may be considered given from the initial guess or the 
previous iteration. The operator 

P v  = V ,  a/am, 
where v, (=( v; + v:)1'2) is the mean meridional velocity and m is the distance along the 
streamlines of the mean flow. Hence the convective equations (equation (25b) and (18)) for f and 
pay may be written in the form 

The blade stacking position is implemented by prescribingf along a line going from hub to 
shroud. For the average density (equation (30)), the initial condition is given by pa, = p along the 
inflow section. 

These equations are solved by locating the streamlines m, integrating f and pav (equations (29) 
and (30)) along those streamlines and interpolating f and pa, back to the finite element mesh. 

The streamlines are located as follows. Along each quasi-orthogonal line in the r-z plane (lines 
going from hub to shroud and normal or almost normal to them) a cubic splineL5 is fitted into the 
nodal values of the streamfunction Y so that it may be evaluated at any point along the quasi- 
orthogonal. The method of  bisection^'^ uses the cubic spline fit for Y to locate the different 
streamlines (Y =constant) crossing that quasi-orthogonal. Equations (29) and (30) are then 
integrated along the streamlines using the trapezoidal rule to yield f and pav, which are 
interpolated back to the finite element mesh using the cubic splines once more. The success of this 
method in locating the streamlines relies on the fact that Y varies monotonously from hub to 
shroud, i.e. it assumes implicitly that the meridional velocity p, does not vanish (implying a 
possible extremum of Y). 

The cubic splines are fourth-order accurate (except near the splines' endpoints where they are 
slightly less accurate) so as to maintain the same or higher accuracy compared with that of the 
streamfunction 'P (2.5-3rd-order accurate). 

3.3. The computation scheme 

scheme implemented in the computer program consists of the following steps. 
Since the system of equations to be solved is non-linear, the solution is iterative. The iteration 

Enter the input data: the hub and the shroud profiles, the prescribed mean swirl schedule, 
the number of blades and their stacking position, the impeller speed and the upstream flow 
conditions (which are uniform). 
Solve the mean flow equation (equation (20)) for Y ( r ,  z) .  
Solve the periodic flow equation (equation (24)) for 6 j ( r ,  z ) ,  the Fourier coefficients 
of the periodic scalar potential $( r,  8, z ) .  
Solve the blade boundary condition (equation (29)) iteratively for the blade shape f (  r,  z ) .  
4.1. Evaluate tb,-Vcr for the current a. 
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4.2. Solve the blade boundary condition for f( r,  z )  and update a. 
4.3. If not converged, go to step 4.1. 

5. If the flow is compressible, solve for the average density (equation (30)) and use the energy 
and homentropic relations to calculate the density. 

6. If convergence is attained, stop; otherwise go to step 2. 

FEM procedures are used to evaluate all derivatives. Since p/p: has a jump across the blades, 
its gradient will behave like a periodic delta function there. Therefore Vln(p/p:) is evaluated by 
taking a DFT of ln(p/p:), evaluating the gradients in the Fourier space and then taking an IDFT 
back to the physical space. A fast Fourier transformI6 has been used to evaluate the DFT and the 
IDFT of W and ln(p/p,*) as mentioned above. Also, Lanczos   moo thing'^ has been used in 
calculating W and In( p/p,*)  to alleviate the Gibbs phenomenon near the blade. 

At this point, a note on the maximum number of harmonics ( N )  to be used in a certain 
calculation is due. The error in determining 6 is due to truncating the series representation of 6 
and to the numerical error incurred in computing each of the harmonics & j ,  so that 

where E~ is the error incurred in computing 6j. It is possible that, on a coarse mesh, zFEM will 
become larger than even for relatively small values of N ,  so that the overall error eN 
would be dominated by the FEM discretization error. The number of blades ( B )  is an important 
factor in determining the size of c j .  As B increases, the source term in equation (24) becomes more 
oscillatory (implying that 6j will also be a highly oscillatory function) so that the numerical 
accuracy deteriorates significantly. The case becomes even worse for the higher harmonics since 
the harmonics' absolute value ( O ( l / j ) )  becomes comparable with the error incurred in calculating 
them. 

A numerical test has shown that when too many harmonics in the 6-direction are evaluated on 
a coarse mesh in the (r, z )  plane, spurious wiggles show up in the &variation of V$. In short, the 
number of harmonics in the &direction, namely N ,  should be such that with the given mesh size 
(characterized by 1 )  in the (r, z )  plane, the RHS source term in equation (24) can be integrated with 
acceptable accuracy. 

3.4. Convergence and consistency 

Convergence in this context refers to the numerical evolution of the solution from an initial 
guess to the final answer. It is measured by the maximum change in pointwise values of the 
variables, called the residual, from one global iteration to the next. The blade boundary condition 
given in equation (29) may be rewritten as 

where the superscripts i and i+ 1 refer to successive global iteration levels. Equation (32) can be 
rewritten as 

where dfldz = ( f i + '  - f i ) / A  is a pseudo-time derivative of 1: Hence 

(34) fi" = AZi + (1 - A ) f i ,  
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where 3. is a pseudo-time step. It corresponds to one global iteration loop where the solution 
advances by one step from the initial guess towards the final answer; note that when i= I ,  
equations (34) and (32) become identical. Equation (33) is analogous to the Euler forward 
integration scheme (explicit, one-step); correspondingly, A is analogous to a time step, the upper 
bound of which is set by the stability requirement of the function being integrated.I8 For 
illustration, the convergence history for different values of A is shown in Figure 2. 

It was found that the explicit imposition of the kinematic condition at the bounding walls, 
namely dfldn = 0 along the hub and shroud, was necessary to obtain a converged solution; this 
behaviour was also observed by Tan et a1.2 

In the course of this work it was found that a converged solution is obtainable whenever the 
mean meridional velocity v,,, does not vanish and/or when the flow is not in the transonic regime. 
When v, vanishes, equation (29) for the blade shape indicates that d f / h + c o ,  which is not 
accounted for in the present work. On the other hand, in the transonic and supersonic flow 
regimes, the numerical scheme used for implementing the inverse design method must appro- 
priately account for the change in the character of the governing equations from elliptic to 
hyperbolic. 

The program is checked for consistency. This check is given by the kinematic identity (equation 
(21), Reference 2) relating the velocity jump across the blades AW to the bound vorticity n. Both 
the RHS and LHS of this identity are evaluated independently and compared. This test is a severe 
one since the Gibbs phenomenon will occur in evaluating the velocity jump AW. It was found 
that, on average, the discrepancy between the two sides decreases as the total number of elements 
is increased, which agrees with the above analysis. 

81 
fJ 

0.00 10.00 20.00 30.00 40.00 
NUMBER OF ITERRTIONS 

Figure 2. Convergence history for different values of pseudo-time step I: A, 1=05; +, A =  1; x ,  1= 1.25 
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4. NUMERICAL EXAMPLES 

To demonstrate the numerical technique presented earlier, it is applied to the design of two inflow 
radial turbine impellers. In these designs the kinematic variables are normalized using the radius 
and radial velocity at the blades' LE, and the rotary stagnation state (which is reached when the 
flow is isentropically decelerated to a stagnation state in the impeller frame) is used as a reference 
state for the thermodynamic variables. 

The computational domain is discretized into 240 elements in the r-z plane having I,,, = 0.08 
and 1053 nodes, as shown in Figure 3, and eight harmonics in the Fourier series representation 
( N  = 8 in equation (23)). 

In both examples the impeller rotational speed o = 2.7475 and the mean swirl schedule takes 
the following form: 

rvg ( t - , z )  = c1(R)(a(R)sin2p + 2 c o ~ 2 p ) e - " ( ~ ) ~  + c 2 ( R ) ,  (35) 
arV,/as = - c ~ ( R )  e-a(R)fl sin 28, 

where c3(R)=c1(R)(a2(R)+4)/R, s=RB and Rand B are shown in Figure 1. The exponent a(R) 
varies linearly from hub to shroud, and the constants c1 and c2 are calculated from the values of 
rV,  set to 2.7475 and 0 at the blades' leading and trailing edges respectively. Note that the mean 
swirl schedule satisfies the constraints at the blades' leading and trailing edges mentioned in 
Section 2.7; moreover, the kinematic constraint mentioned in Section 2.6, namely ar v,/h = 0, is 
imposed by adjusting the value of r v ,  along the hub and shroud such that this constraint is 
satisfied. 

The first example is that of a double-circular-arc impeller (where both hub and shroud form 
circular arcs in the meridional plane) having 15 blades stacked at midchord. The exponent a(R)  in 
equation (35) varies linearly between 2.5 along the hub and 0.5 along the shroud, and the relative 

Figure 3. The finite element mesh; the nodes are marked with a + symbol 
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Figure 4. The mean swirl distribution t-v, 
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Figure 5. The relative radial velocity at rnidchord and rnidspan 
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Table I .  The impeller geometry ( r , J  z )  corresponding to  the first design 
~ 

r f Z r f L r f' Z 

1 .oooo 
1 .oooo 
1~0000 
1 .om0 
1~0000 
1 .oooo 
1 ~oO00 
1 .0000 
1 .oooo 
1.0000 
1 .om0 
1~0000 
1~0000 

0 3 5 5 5  
05694 
05833 
0.5972 
0.6111 
0.6250 
0.6389 
0.6528 
0.6667 
0.6805 
0.6944 
07083 
0.7222 

0.2609 
0.2840 
0.3071 
0.3302 
0.3533 
0.3764 
0.3995 
0.4226 
0.4457 
0.4688 
04919 
0.5 150 
0.5381 

- 0.1 825 0'8000 
-0.1840 0.7750 
-0'1884 0.7500 
- 0.1 943 0.7250 
-0.1958 07000 
- 0.1966 06750 
- 0.1 948 06500 
- 0.1928 0.6250 
-0.1903 0'6000 
-0.1883 0.5750 
-0.1892 0.5500 
-0.1876 05250 
- 0.1870 0.5000 

0.0367 0.6652 
0.0304 06444 
0.0 1 15 0.6236 

-0'0057 06028 
-0'0108 0.5820 
-0.0131 0.5612 
-0.0150 0.5405 
-0.0168 0'5197 
-0.0187 0.4989 
-0.021 1 0.4781 
-0.0277 0.4573 
-0,0353 0.4365 
-0.0378 0.4157 

-0-1719 0.3061 
-0.1661 02966 
-0.1488 0.2870 
-0.1273 0.2774 
-0.1169 0.2679 
-0.1092 0.2583 
-0.1011 0.2487 
-0.0919 0.2392 
- 0.083 1 0.2296 
-0.0726 0.2200 
-0.0552 02105 
- 0.0363 0.2009 
-0.0299 0.1913 

0.8439 
0.8488 
0.8537 
0.8586 
08634 
0.8683 
0.8732 
0.8781 
0.8829 
0.8878 
0.8927 
0.8976 
0.9025 

0.4343 
0.4520 
0.4697 
0.4873 
0.5050 
0.5227 
0.5404 
05581 
0.5757 
0.5934 
0.61 11 
0.6288 
0.6464 

0-2 154 
0.2399 
0.2644 
0.2889 
0.3135 
0.3380 
0.3625 
0.3870 
0.4115 
0.4360 
0.4606 
0.4851 
0.5096 

- 0.0968 
-0.1006 
-0.1 121 
-01247 
- 0.1 341 
- 0.1 384 
-0.1408 
- 0.14 17 
- 0.142 1 
-0.1433 
-0.1473 
- 0.1505 
-0.1515 

0~0000 
0~0000 
0.0000 
0.0000 
0.0000 
0~0oO0 
00000 
0~0000 
0.0000 
0~0000 
0~0000 
00000 
0OoO0 

-0'2976 
- 0.2901 
- 0.2678 
-0.2394 
-0'2215 
- 02074 
-0.1933 
-0.1775 
-0.1 63 1 
-0.1453 
- 0.12 15 
-00960 
-0.0875 

0.7846 
0.7601 
0.7356 
0.7 I 11 
0.6865 
0.6620 
0.6.375 
0.6 130 
0.5885 
0.5640 
0.5 394 
0.5149 
0.4904 
0.5457 
05480 
0.5303 
0.5127 
0.4950 
0.4773 
0.4596 
0.44 19 
04243 
0.4066 
0.3889 
03712 
0.3536 

0.1561 
0.1512 
0.1463 
0.1414 
0.1366 
0.1317 
0.1268 
0.1219 
0.1171 
0.1 122 
0.1073 
0.1024 
0.0975 

06939 
0.7034 
0.7 130 
0.7226 
0.7321 
0.74 17 
0.7513 
0.7608 
0.7704 
0.7800 
0.7895 
0.799 1 
0.8087 

0.3348 
0.3556 
0.3764 
0.3972 
0.4180 
0.4388 
0.4595 
0.4803 
0.501 1 
0.52 19 
0.5427 
0.5635 
0.5843 

0.2000 
0.2250 
0.2500 
0.2750 
0.3000 
0.3250 
0.3500 
0.3750 
0.4000 
0.4250 
04500 
0.4750 
05000 

- 0.0005 
- 0.007 1 
- 0.0267 
- 0.0470 
-0'0610 
- 0.0657 
- 0'0690 
- 0.07 12 
- 0.0734 
- 0.0767 
- 0.0842 
- 0.09 15 
- 0'0940 
- 0.072 1 
-0.0678 
- 0.0550 
-0.0417 
-0.0383 
- 0.0349 
-0.0315 
- 0.0279 
- 0'024 1 
-0.0199 
- 0.0106 
- 0~0oO0 

0.0035 

- 0.4309 
- 0.4206 
- 0.3896 
- 0.3544 
- 0.3308 
-0.3099 
- 0.2899 
- 0.268 1 
- 0.248 1 
- 0-2241 
-0.1952 
-0.1648 
- 0.1 547 

0.7391 
0.7160 
0.6929 
0.6698 
0.6467 
0.6236 
0.6005 
0.5774 
0.5543 
0.5312 
0.508 1 
0.4850 
0.46 1 9 
0.4445 
0.4306 
04167 
0.4028 
0.3889 
0.3750 
0.361 1 
0.3472 
0.3333 
0.3195 
0.3056 
0.291 7 
0.2778 

O~OOOO 
O.Oo00 
0~oO00 
o.Oo00 
0~oO00 
O~oooO 
0.0000 
o.Oo00 
0~oO00 
o.Oo00 
O.oO00 
00000 
o.Oo00 

Mach number at the blades' LE is set to 0.15 (based on a mean line calculation). Figure 4 shows 
the input mean swirl schedule, and the resulting impeller geometry is given in Table I. The radial 
velocity component W, at midchord and midspan, plotted in Figure 5, shows that the mean and 
periodic parts of the velocity are of the same order. The relative Mach number on the blades 
varies between 0.76 on the suction side and 0.04 on the pressure side, as shown in Figure 6. 

The second example is that of a typical low-speed inflow radial turbine impeller having 17 
blades stacked at midchord (the hub and shroud profiles are courtesy of Dr. J. E. Borges). The 
flow is assumed to be incompressible and the blades' thickness varies linearly with the radial co- 
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Figure 6. The relative Mach number on the blade suction (solid lines) and pressure (broken lines) surfaces, along the 

hub (A), midspan (+) and shroud ( x )  (every other node shown) 
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Figure 7. The mean swirl distribution r v ,  for an RIT impeller 
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Table 11. The impeller geometry ( r , A  z )  corresponding to the second design 

r .f Z r f Z r f Z 

1 .oooo 
1 .oooo 
1 ~0000 
1 ~0000 
1 ~0000 
1 .oooo 
1 .oooo 
1 .oooo 
I .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
1 .oooo 
0,6303 
0.6390 
0.6477 
0.663 1 
0.6785 
0.6940 
0.7094 
0.7249 
0.7403 
0.7557 
0.77 12 
0.7894 
0.8076 

0.2900 
0.3241 
0.3582 
03935 
0.4289 
0.4643 
0.4996 
03350 
0.5704 
0.6057 
0.641 I 
0.6777 
0.7143 

-0.1269 0.6129 
-0.1258 0.5930 
-0.1226 05731 
-0.1220 0.5532 
-0.1 158 0.5333 
-0.1 100 05134 
-0.1047 0.4935 
-0.1006 0.4737 
- 0.0982 0.4538 
-0.0965 04339 
-0.0965 0.4140 
-0.0930 0.3941 
- 0.09 18 0'3742 

0.0345 0.5783 
0.0288 0.5528 
0,0116 0.5273 
0.0 140 05042 
0.0248 0.48 1 1 
0.0266 0.4580 
0.0263 0.4349 
0.026 1 0.4 1 1 8 
0.0233 0.3887 
0.01 63 0.3656 
0.0091 0.3425 
0.0062 0.3219 
0.0053 0.3013 

-0.3644 0.3073 
-0.3581 0.2866 
-0.3390 0.2659 
-0.3230 0.2512 
-0.3060 0.2366 
-0.2860 0.2219 
- 0.2669 0.2073 
- 0.2428 0.1 926 
-0'2199 0.1780 
-0.1932 0.1633 
-0.1697 0.1487 
-0.1477 0.1420 
-0.1403 0.1354 

0.8863 
0,8863 
0.8863 
0.8904 
0.8945 
0.8986 
0.9027 
0.9069 
0.91 10 
0.9151 
0.9 192 
0.9243 
0.9294 

05022 
0.5 182 
0.5342 
0.5565 
0.5788 
0.601 1 
0.6234 
0.6457 
0.6680 
0.6902 
0.7 125 
07378 
0.763 1 

0.2279 
0.2694 
0.3 I09 
0.3508 
0.3907 
0.4306 
0.4704 
0.5103 
0.5502 
0.5901 
0.6299 
0.6698 
0.7097 

-0.0720 
-0.0732 
- 0.0768 
- 0.0777 
- 0.07 10 
- 0.0667 
- 0.0629 
- 0.0607 
- 0.0604 
- 0.06 16 
- 0.0637 
- 0.0624 
- 0.0620 

0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 

- 0.7205 
- 0.7066 
- 0.6648 
- 0.623 1 
-0.5776 
-0.5297 
-0.4858 
-0.4386 
-0.3942 
-0.3492 
- 0.3 101 
-0.2755 
- 0.2640 

0.6 129 
0.5922 
0.57 16 
0.5509 
0.5303 
0-5096 
04889 
0.4683 
0-4476 
0.4270 
0.4063 
0.3859 
0.3655 
0.5 182 
0.4920 
0.4658 
0.4435 
0.42 1 2 
0.3989 
0.35'66 
0.3543 
0.32'20 
0.3098 
0.2 8 7 5 
0,2696 
0.25 17 

0.1 573 
0.1472 
0-1371 
0.1'291 
0.1 ;I 12 
0.1 133 
0.1053 
0.0974 
0.0895 
0.08 15 
0-0736 
0.01'36 
0.0736 

0.76 17 
0.7645 
0.7673 
0-7765 
0.7858 
0.795 1 
0.8043 
0.8 136 
0.8229 
0.8321 
0.8414 
0.8527 
0.8640 

0.3858 
0.4 100 
0.4343 
0.4636 
0.4928 
05221 
05514 
0.5806 
0.6099 
0.6391 
0.6684 
0.700 1 
0.73 19 

0.21 29 
0.2543 
0,2957 
0.3371 
0.3785 
0.4199 
0.46 13 
0.5027 
0.544 1 
0.5855 
0.6269 
0.6683 
07097 

0.00 13 
-0.0052 
- 0.0246 
- 0.0209 
- 0.01 52 
- 00094 
- 0.0074 
- 0.0064 
- 0.0087 
-0.0140 
- 0.0200 
- 0.02 10 
- 0.021 3 

- 0.1294 
-0.1253 
-0.1132 
-0.1 103 
-0.1 104 
- 0'1074 
- 0.1022 
- 0.0947 
- 0.0869 
- 0.0745 
- 0.0625 
-0.0521 
- 0.0486 

- 1.1 I23 
- 1.0871 
- 1.01 16 
-0.9415 
- 0.87 12 
- 0.80 18 
-0.7370 
-0.6707 
- 0.6086 
- 0.5470 
- 0.48 16 
- 0.4348 
-04192 

0.6083 
0.5851 
0.5619 
0.5395 
0.5171 
0.4947 
0.4724 
0.4500 
0.4276 
0.4053 
0.3829 
0.3616 
0.3404 

0.4272 
0.4026 
0.3780 
0.3584 
0.3389 
0.3 193 
0.2998 
0.2802 
0.2607 
0.241 1 
0.22 16 
0.2084 
0.1952 

0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0~0000 
0.0000 
0~0000 
0~0000 
0~0000 
0~0000 
0.0000 
0~0000 

ordinate r in the form t=0.01 +0.03(1 -r)  and vanishes along the blades' LE and TE; conse- 
quently the mean stream surface thickness parameter b (= 1 - Bt/271r) varies between 0.5725 
and 1. The exponent a ( R )  in equation (35) varies linearly between 2 along the hub and 0 along the 
shroud. The input mean swirl schedule and the resulting blade shape are given in Figure 7 and 
Table IT respectively. 

It is worth noting that the velocity at  the blade suction or pressure surface may be calculated as 
follows: 

W +  =W,, i -+AW, 

where AW is the velocity jump across the blade and may be calculated from the bound vorticity.2 
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These examples show that this technique can handle situations where the maximum Mach 
number is close to the transonic regime and where the periodic part of the velocity (which is a 
good measure of the discrete blade effect) is as large as the mean part. 

5. CONCLUDING REMARKS 

An analytical method to design turbomachinery blading in three-dimensional flow is presented. 
The numerical technique used to implement the design of turbomachinery blading in the subsonic 
regime has been described. A mixed spectral finite element scheme is used to solve the resulting 
governing equations, which are three-dimensional and of the elliptic type for subsonic flow. Since 
the problem is non-linear, the final blade shape corresponding to a prescribed mean swirl 
distribution is determined iteratively. 

In the course of this work it was found that, for a given hub and shroud geometry, number of 
blades and their stacking position, and a mean swirl schedule that satisfies the zero incidence 
angle at the leading edge and the Kutta condition at the trailing edge, a converged solution for the 
blade shape is obtained when the mean meridional velocity does not vanish and the Mach 
number is not close to unity. 

To demonstrate the application of the method, it is used to design two radial inflow turbine 
impellers. Some sample results for the blade shape, velocity and Mach number fields that would 
yield a prescribed mean swirl schedule are presented. 
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APPENDIX: NOMENCLATURE 

mean stream surface thickness parameter, equation (1 7) 
number of blades 
unit vector 
blade shape 
enthalpy 
element characteristics dimension, e.g. its diagonal 
distance along streamlines of the mean flow 
pressure 
cylindrical co-ordinates 
entropy 
blade thickness in the &direction 
temperature 
absolute, relative velocity vectors 
absolute periodic velocity vector 
sawtooth function, equation (14) 
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Greek letters 

c1 

Y 

P 
PW 
Y 
6 
4 
n 

;I 

6,(co 

w 

blade surface, equation (8) 
specific heats ratio 
periodic delta function, equation (9) 
density 
average density, equation (17) 
Stokes streamfunction, equation (19) 
periodic scalar potential function harmonics, equation (23) 
scalar potential function, equation (1 1) 
vorticity vector 
impeller rotational speed 
pseudo-time step, equation (34) 

Subscripts 

bl ‘at’ the blade 
LE leading edge 
m 
r,  8, z 
st stacking position 
TE trailing edge 
t total, stagnation 

meridional plane, r-z plane in Figure l(a) 
r-, 8-, z-components 

Superscripts 

+/- blade pressure/suction surface, Figure l(b) 
* rotary 

Other 

tangential average, equation (10) 
0 periodic part 
RIT radial inflow turbine 
FEM finite element method 
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